MAASTRICHTIAN-EARLY DANIAN RADIOLARIANS AND OSTRACODES
FROM ODP SITE 1001B, CARIBBEAN SEA

GUSTAVO NUNES AUMOND, KARLOS GUILHERME DIEMER KOCHHANN, LEONARDO SANTOS FLORISBAL, SIMONE BAECKER FAUTH, CRISTIANINI TRESCASTRO BERGUE & GERSON FAUTH

ABSTRACT – The ODP, Site 1001B (Leg 165), located in the Caribbean Sea, presents a well preserved sedimentary succession ranging from the Cretaceous to the Neogene that consists predominantly of pelagic limestone. The main objective of this article is to study taxonomically the Maastrichtian radiolarian and the Maastrichtian-early Danian ostracode faunas recovered in the studied site and to compare them to faunas previously described elsewhere. Despite the discontinuity of the occurrences and the scarcity of specimens, 45 radiolarian species and seven ostracode species assigned to six genera, were identified. The radiolarians were recovered only in the cores 21R and 20R and correspond to a typical Upper Cretaceous fauna, containing even species considered as index fossils such as Orbiculiforma renillaeformis (Campbell & Clark) Pessagno. The seven ostracode taxa occur in the Maastrichtian-early Danian interval. The single specimen of Paleoabyssocythere sp. here recorded could not be ascribed to none of the described species and possibly constitutes a new taxon. The presence of the ostracode association Paleoabyssocythere-Krithe-Bairdoppilata-Cytherella suggests deposition in a bathyal or outer shelf environment.

Key words: radiolarians, ostracodes, Cretaceous, Paleogene, ODP Site 1001B, Caribbean Sea.

INTRODUCTION

Stratigraphic successions containing the record of the Cretaceous/Paleogene (K/Pg) transition are rare and of great significance to the scientific community (MacLeod et al., 1997). The Caribbean carbonated shelf contains one of the most important of these records, being closely related to the Yucatán Peninsula, where at 65 Myr ago a possible meteoric collision began one of the greatest mass extinctions in the history of the Earth (Ridley, 1996).

The main objective of the present work is to study the radiolarian and ostracode faunas recovered in the Maastrichtian-early Danian interval of the ODP (Ocean Drilling Program) Site 1001B, contributing to the improvement of the knowledge about these groups in this time interval.

STUDY AREA

The samples analyzed in the present study comprise the Maastrichtian-early Danian interval of the ODP Leg 165, Site 1001B (15º45.418’ N/74º54.626’ W), cores 21R-16R (Figure 1). This interval possesses a precise biostratigraphic control.
based on nannofossils and planktonic foraminifers (Sigurdsson et al., 1997; Figure 2).

The tectonic reconstruction proposed to explain the origin of the Caribbean oceanic crust, encloses a crustal spreading zone localized at the Pacific Ocean (Burke, 1988; Donnelly et al., 1990; Pindell & Barrett, 1990). These authors suggest that an intense volcanism associated to the Galápagos hot spot, had generated the Caribbean Oceanic Plateau, as well as, the Farallon Plate. Two stratigraphic sequences are recognized in the studied area (Sigurdsson et al., 1997). The first sequence directly overlaid on the volcanic basement, which depositional period ranges from the Middle Campanian to the Middle Eocene, is predominantly composed by chalk and limestone interstratified with a minor amount of mudstone and siltstone. With the sea level fall, which occurred in the Eocene, an erosive boundary was generated, followed by the deposition of the second stratigraphic sequence, which is composed of pelagic ooze, and follows up from the middle Miocene to the Pleistocene.

MATERIAL AND METHODS

Lithologically the samples are composed dominantly by pelagic limestone interstratified with small proportion of mudstone and siltstone. Foraminifers are very abundant throughout the hole, whereas radiolarians and ostracodes only occur in some samples.

The samples were immersed in 40% hydrogen peroxide solution (\(H_2O_2\)) during 72 hours and later washed and fractionated in four meshes (45, 63, 180 and 250 \(\mu m\)), in order to recover both radiolarians and ostracodes. Finally, specimens were hand-picked under stereo-microscope. Representative radiolarians and ostracodes were photographed in Scanning Electron Microscope (SEM) at the CENPES/PETROBRAS and at the Centro de Microscopia e Microanálises (CEMM) of Pontificia Universidade Católica do Rio Grande do Sul (PUCRS). Radiolarians were also photographed under optical microscopy with the use of a Zeiss Axioscope 40.

In the two radiolarians-rich samples (1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm) 300 specimens were picked. In the sample 21R/6W only specimens retained in the 63 \(\mu m\) mesh were recovered.

The specimens studied in the present work will be hold in the collections of Museu de Paleontologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Brazil under the curatorial number ULVG-7011 to ULVG-7062. In the ostracode section of the systematic study the following abbreviations are used: l, length; h, height; w, width; C, carapace; RV, right valve; LV, left valve.

SYSTEMATIC PALEONTOLOGY

Radiolarians

Order NASSELLARIA Ehrenberg, 1875
Family ARCHAEODICTYOMITRIDAe Pessagno, 1976
Genus Dictyomitra Zittel, 1876 emend. Pessagno, 1976
Dictyomitra napaensis Pessagno, 1976

(Figure 3A)

Dictyomitra napaensis Pessagno, 1976, p. 53, pl. 4, fig. 16; pl. 5, fig. 1.
Dictyomitra napaensis Pessagno. Pessagno, 1977a, p. 942, pl. 3, fig. 1.

Figured specimen. ULVG-7018.

Occurrence. Middle-upper Turonian to Upper Coniacian of Great Valley Sequence, California (Pessagno, 1976, 1977a); upper Cenomanian from ODP sites 1258 and 1261, Leg 207, Demerara Rise (Musavu-Moussavou & Danelian, 2006).

Material. 30 specimens; sample 1001B/21R/6W/71-75 cm.

Figure 1. Location of the ODP Site 1001B at the Caribbean Sea.
Figure 2. Ostracode and radiolarian occurrences in the studied samples from site 1001B (modified from Sigurdsson et al., 1997).
Dictyomitra rhadina Foreman, 1968
(Figure 3F)

Dictyomitra rhadina Foreman, 1968, p. 66, pl. 7, figs. 5a,b.

Dictyomitra rhadina Foreman. Hollis, 1997, p. 69, pl. 16, figs. 17-20.

Figured specimen. ULVG-7019.

Occurrence. Upper Maastrichtian of California (Foreman, 1968); Maastrichtian to lower Paleocene of New Zealand (Hollis, 1997); upper Cretaceous to lower Paleocene from DSDP site 208, New Zealand (Hollis, 2002).

Material. 110 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Dictyomitra andersoni (Campbell & Clark) Foreman, 1968
(Figure 3E)

Dictyomitra andersoni (Campbell & Clark) Foreman. Foreman, 1968, p. 68, pl. 7, figs. 6a,b.

Dictyomitra andersoni (Campbell & Clark) Foreman. Hollis, 1997, p. 69, pl. 16, figs. 11-16.

Figured specimen. ULVG-7020.

Occurrence. Upper Maastrichtian of California (Foreman, 1968); Campanian of Cyprus Island (Urquhart, 1994); Campanian-Maastrichtian to late Paleocene of New Zealand (Hollis, 1997); Santonian-Campanian of Kara Crater, Russia (Vishnevskaya & Alekseev, 2008); Coniacian-Turonian of Russia (Vishnevskaya et al., 2006); Coniacian-Santonian of Bornholm, Denmark (Packer & Hart, 2005); Coniacian-Turonian of Russia (Vishnevskaya et al., 2007).

Material. 1 specimen; sample 1001B/21R/6W/71-75 cm.

Dictyomitra multicostata Zittel, 1876 emend. Pessagno, 1976
(Figure 3D)

Dictyomitra multicostata Zittel. Pessagno, 1975, p. 1017, pl. 5, figs. 1-3.

Dictyomitra multicostata Zittel. Pessagno, 1976, p. 51, pl. 14, figs. 10-14, 16.

Dictyomitra multicostata Zittel. Pessagno, 1977a, p. 947, pl. 8, figs. 3, 4.

Dictyomitra multicostata Zittel. Vishnevskaya & Alekseev, 2008, p. 1367, figs. 3j-l.

Dictyomitra multicostata Zittel. Olfer’ev et al., 2007, p. 646, pl. 19, fig. 10.

Figured specimen. ULVG-7022.

Occurrence. Upper Coniacian to uppermost Coniacian of Great Valley Sequence, California (Pessagno, 1976); Campanian from the DSDP Site 275, New Zealand (Pessagno, 1975); upper Coniacian to Santonian of California (Pessagno, 1977a); Santonian of Russia (Olfer’ev et al., 2007); Santonian-Campanian of Kara Crater, Russia (Vishnevskaya & Alekseev, 2008).

Material. 110 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Dictyomitra gracilis (Squinabol) O’Dogherty, 1994
(Figure 3C)

Dictyomitra gracilis (Squinabol) O’Dogherty, 1994, p. 73, pl. 1, figs. 12-25.

Dictyomitra gracilis (Squinabol) Taketani. Urquhart, 1994, p. 1406, figs. 5(8, 14).

Figured specimen. ULVG-7023.

Occurrence. Campanian of Cyprus Island (Urquhart, 1994); upper Albian of Italy and Spain (O’Dogherty, 1994).

Material. 5 specimens; sample 1001B/21R/6W/71-75 cm.

Dictyomitra sp. 1
(Figure 3B)

Figured specimen. ULVG-7024.

Description. Multi-segmented skeleton (10 to 13 segments) with elongated, conical to cylindrical-shaped test, and with well developed longitudinally aligned costae through all surface. Cephalis slightly acute apically with a small apical protrusion. Costae obscured at stricutures. A single parallel row of aligned sub-circular pores lies between adjacent costae. Deep and well-developed constrictions occurring at joints between segments formed by two transverse rows of pores, which are followed by the costae outline. Lateral outlines of the test strongly lobate at segmental division levels. Chambers gradually increase in length and width,
becoming cylindrical distally, where one or two segments with pores bigger than the ones from the proximal segments occur, and costae became more irregular.

Remarks. This species differs from *Dictyomitra cf. crassispina* figured by Foreman (1968) by the two rows of pores at strictures. It cannot be included in the genus *Pseudodictyomitra* due to the continuous costae obscured at strictures.

Material. 13 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Dictyomitra sp. 2

(Figure 3G)

Figured specimen. ULVG-7025.

Description. Multi-segmented form (six to eight segments) with test elongate and conical shape, with well developed vertically aligned costae obscured on cephalis and thorax. Cephalis slightly acute apically. Between adjacent costae, single parallel row of aligned sub-circular pores. Deep and well-developed constrictions occurring at joints of the segments, formed by one or two transverse rows of pores, which are followed by the costae outline. Costae are normally obscured at strictures. One transverse row of large circular depressions that may perforate the shell wall as pores is present on the central part of each abdominal segment between adjacent costae. Lateral outlines of the test strongly lobate at segmental division levels. Chambers gradually increase in length and width distally. Distal segment with distal margin ragged, may or may not possess small costal projections.

Remarks. Differs from all the other species of *Dictyomitra* recovered in the studied material by possessing deep constrictions at the joints of the segments, formed probably by two transverse rows of pores, and by its evident conical shape. Another significant difference is the presence of a transverse row of large circular depressions that may perforate the shell wall as pores at the central part of each abdominal segment between adjacent costae.

Material. 32 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Genus *Archeodictyomitra* Pessagno, 1976

Archeodictyomitra regina (Campbell & Clark) Pessagno, 1976

(Figure 4P)

Dictyomitra regina (Campbell & Clark). Foreman, 1968, p. 68-79, pl. 8, figs. 5a-c.

Figured specimen. ULVG-7026.

Occurrence. Upper Campanian to Maastrichtian of Great Valley Sequence, California (Pessagno, 1976); upper Maastrichtian of California (Foreman, 1968).

Material. 6 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Family AMPHIPYNDACIDAE Riedel, 1967

Amphipyndax Foreman *emend.* Sanfilippo & Riedel, 1985

Amphipyndax pseudoconulus (Pessagno) Emson-Morin, 1982

(Figure 3N)

Lithostrobus (Lithostrobus) *pseudoconulus* Pessagno, 1963, p. 210, pl. 1, fig. 8; pl. 5, figs. 6, 8.

Amphipyndax pseudoconulus (Pessagno). Sanfilippo & Riedel, 1985, p. 596, fig. 7(1a-c).

Figured specimen. ULVG-7027.

Occurrence. Lower Campanian of Puerto Rico (Pessagno, 1963); Campanian of Cyprus Island (Urquhart, 1994). 28 specimens; sample 1001B/21R/6W/71-75 cm.

Genus *Xitus* Pessagno, 1977b

Xitus sp.

(Figure 3H)

Figured specimen. ULVG-7028.

Description. Multi-segmented conical skeleton (six to eight segments) with imperfect cephalis and with or without apical spine. All segments present small subcircular pores, except by the cephalis. Circumferential ridges, composed by nodes and interconnected by bars, are present mainly at segmental divisions.

Remarks. Differs from *Stichomitra asymbatos* by the denser arrangement of the circumferential ridges, conspicuously developed at segmental divisions.

Material. 9 specimens; sample 1001B/21R/6W/71-75 cm.

Family EUCYRTIDIIDAE Ehrenberg, 1847

Genus *Stichomitra* Cayeux 1897

Stichomitra stocki (Campbell & Clark) O’Dogherty, 1994

(Figure 3K)

Amphipyndax stocki (Campbell & Clark) Foreman, 1968, p. 78, pl. 8, figs. 12a-c.

Amphipyndax stocki (Campbell & Clark) Foreman. Pessagno, 1975, p. 1016, pl. 4, figs. 4-8.

Stichomitra stocki (Campbell & Clark) Foreman. O’Dogherty, 1994, p. 147, pl. 18, figs. 9-15.

Amphipyndax stocki (Campbell & Clark) gr., new group. Hollis, 1997, p. 66, pl. 15, figs. 5-11.

Stichomitra sp. cf. *Amphipyndax stocki* Packer & Hart, 2005, p. 142, fig. 6e.

Figured specimen. ULVG-7029.

Occurrence. Upper Maastrichtian of California (Foreman, 1968); lower Turonian and upper Cenomanian of Italy and Spain (O’Dogherty, 1994); Campanian of Cyprus Island (Urquhart, 1994); Campanian-Maastrichtian to lower Eocene of New Zealand (Hollis, 1997; Hollis & Strong, 2003); latest Campanian to Maastrichtian from DSDP Site 275, New Zealand coast (Pessagno, 1975); Upper Cretaceous to Paleocene from the ODP site 1121 and DSDP site 208, New Zealand (Hollis, 2002); Coniacian-Santonian of Bornholm,
Denmark (Packer & Hart, 2005); Campanian of Russia (Olfer’ev et al., 2007); Coniacian-Turonian of Russia (Vishnevskaya et al., 2006); Santonian-Campanian of the Russian Pacific Margin (Vishnevskaya & Basov, 2007).

Material. 5 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Stichomitra asymbatos Foreman, 1968
(Figures 3I, J)

Figured specimen. ULVG-7030.

Occurrence. Upper Maastrichtian of California (Foreman, 1968); Campanian of Russia (Olfer’ev et al., 2007); Coniacian-Turonian of Russia (Vishnevskaya et al., 2006).

Material. 21 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Stichomitra sp. 1
(Figure 3L)

Figured specimen. ULVG-7031.

Description. Multi-segmented form. Cephalis is short, lacking apical horn, and poreless. Well developed strictures, generating a lobate outline; pores of the thorax and subsequent segments arranged in a square pattern or irregularly in only one shell layer.

Remarks. This species differs from all other species from the genus Stichomitra recovered in the studied material by its strong lobate outline.

Material. 19 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Rhopalosyringium cf. R. magnificum Campbell & Clark, 1944
(Figure 3Q)

cf. Rhopalosyringium magnificum Campbell & Clark, 1944, p. 30, pl. 7, figs. 16, 17.

Figured specimen. ULVG-7034.

Occurrence. Campanian from DSDP Site 313, Mid-Pacific Mountains (Empson-Morin, 1981); Upper Cretaceous of California (Campbell & Clark, 1944).

Material. 12 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Rhopalosyringium sp. 1
(Figure 3P)

Figured specimen. ULVG-7035.

Description. Test composed of three segments (including the tube). Cephalis small and hemispherical, with small pores that develop small nodes at the bars junctions of the pore frames. Thorax subspherical with large hexagonal to pentagonal pore frames. Test terminates in an open tube which has smaller pores than the thorax, and nodes irregularly distributed. The terminal tube may increase in width distally.

Remarks. This species possesses very poor-developed strictures and, differs from all other species of Rhopalosyringium recovered in this material by its terminal tube which may increases in width distally.

Material. 2 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Rhopalosyringium sp. 2
(Figure 3S)

Figured specimen. ULVG-7036.

Description. Test of three segments with strictures relatively diffuses in comparison to the other species of Rhopalosyringium. Cephalis small and hemispherical, bearing an apical horn, with small pores developing small nodes at the bars junctions of the pore frames. Thorax subspherical with large pentagonal and hexagonal pore frames arranged quincuncially. Test terminates in an open tube which presents pores and nodes slightly developed and irregularly distributed. Terminal tube decreases in width distally.

Remarks. This species presents the proximal part of test conical, and the distal portion (terminal tube) inversely conical in outline.

Material. 2 specimens; sample 1001B/21R/6W/71-75 cm.

Rhopalosyringium sp. 3
(Figure 3T)

Figured specimen. ULVG-7037.

Description. Test composed of cephalis, thorax and terminal tube. Cephalis is small, hemispherical, with small irregularly
distributed pores. Cephalis can develop an apical horn in well preserved specimens. Thorax subspherical with polygonal pore frames. Distal segment (portion of the test) inversely conical, open and bearing circular pores.

Remarks. Differs from *Rhopalosyringium* sp. 1 by having an inversely conical distal segment, and by the absence of well-developed strictures.

Material. 3 specimens; sample 1001B/21R/6W/71-75 cm.

Rhopalosyringium sp. 4 (Figure 3R)

Figured specimen. ULVG-7038.

Description. Skeleton composed by two segments. Cephalis hemispherical, bearing an acute small apical horn. Collar stricture diffuse. Thorax subspherical, with hexagonal pore-frames presenting small nodes at the bars junctions.

Remarks. In lateral view, under stereo-microscope, this species presents the distal margin ragged.

Material. 6 specimens; sample 1001B/21R/6W/71-75 cm.

Genus *Krempelinella* Empson-Morin, 1981

Krempelinella cf. *K. kronenartiga* Empson-Morin, 1981 (Figure 4Q)

cf. *Krempelinella kronenartiga* Empson-Morin, 1981, p. 265, pl. 8, figs. 4-7d; pl. 9, figs 1a-d.

Figured specimen. ULVG-7039

Occurrence. Campanian from DSDP Site 313, Mid-Pacific Mountains (Empson-Morin, 1981).

Material. 2 specimens; sample 1001B/21R/6W/71-75 cm.

Family *WILLIRIEDELLIDAE* Dumitrica, 1970

Genus *Cryptamphorella* Dumitrica, 1970

* Cryptamphorella* sp. (Figure 3U)

Figured specimen. ULVG-7040.

Description. Cryptothoracic nassellarian, tri-chambered, with large spherical abdomen; small cephalo-thoracic portion, poreless or with small pores, and partially depressed in the abdominal cavity. Abdomen spherical with rough surface, and pentagonal and hexagonal pore frames, with bars developing nodes at junctions.

Material. 8 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

NASSELLARIA INCERTAE SEDIS

Nassellaria gen. et sp. indet. (Figure 4I)

Figured specimen. ULVG-7041.

Remarks. Possible cryptocephalic Nassellaria with pores quincuncially arranged.

Material. 4 specimens; sample 1001B/21R/6W/71-75 cm.

Order *SPUMELLARIA* Ehrenberg, 1875

Family *ACTINOMMIDAE* Pessagno 1976 *emend.* De Wever et al., 2001

ACTINOMMIDAE gen. et sp. indet. (Figure 4M)

Figured specimen. ULVG-7042.

Description. Test lenticular without spines. Cortical shell with small hexagonal pore frames.

Material. 19 specimens; samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm.

Family *CONOCARYOMMIDAE* Lipman, 1969 *emend.* De Wever et al., 2001

* Praeconocaryomma* Pessagno, 1976

* Praeconocaryomma californiaensis* Pessagno, 1976

* Praeconocaryomma californiaensis* Pessagno, Pessagno, 1977a, p. 942, pl. 3, figs. 3-6.

* Praeconocaryomma californiaensis* Pessagno. Packer & Hart, 2005, p. 144, figs. 7j, k.

Figured specimen. ULVG-7043

Occurrence. Coniacian of Great Valley Sequence, California (Pessagno, 1976, 1977a); Coniacian-Santonian of Bornholm, Denmark (Packer & Hart, 2005); Santonian of Russia (Olfer’ev et al., 2007); Santonian-Campanian of Kara Crater, Russia (Vishnevskaya & Alekseev, 2008).

Material. 10 specimens; sample 1001B/21R/6W/71-75 cm.

* Praeconocaryomma*? sp. (Figure 3X)

Figured specimen. ULVG-7044.

Description. Cortical shell presents six large elliptical pores surrounding each (?)mamma; area between (?)mammae with circular to elliptical pores. Central area of (?)mammae have triradiate spines in axial section. Mammary area weakly developed.

Remarks. This species is tentatively assigned to the genus *Praeconocaryomma*, based on the presence of weakly developed mammary areas.

Material. 10 specimens; sample 1001B/21R/6W/71-75 cm.

Family *PSEUDOAULOPHACIDAE* Riedel, 1967 *emend.* De Wever et al., 2001

* Alievium* Pessagno 1972b

* Alievium* sp. (Figure 4G)

Figured specimen. ULVG-7045.

Description. Test sub-triangular in outline; with a meshwork comprised of triangular to subcircular pore frames arranged
in all the surface, developing small nodes at pore-frame bars junctions. Three primary spines occur in the corners of the sub-triangular test, which are apparently tri-radiated in cross-section.

Remarks. No specific determination is possible (all specimens recovered are broken).

Material. 9 specimens; sample 1001B/21R/6W/71-75 cm.

Genus *Pseudoaulophacus* Pessagno, 1963 emend. Pessagno 1972b

Pseudoaulophacus? sp. (Figure 4F)

Figured specimen. ULVG-7046.

Description. Test circular in outline, with larger pores in the elevated central area than those of remainder test; central area poorly elevated. Large conical spines developed in the equatorial plane of the test.

Remarks: The knob-like area showed in the illustration is composed by sedimentary material, and was removed using ultrasound treatment.

Material. 1 specimen; sample 1001B/21R/6W/71-75 cm.

Family ANGULOBRACCHIIDAE Baumgartner, 1980 emend. De Wever et al., 2001

Genus *Paronaella* Pessagno, 1971

Paronaella sp. 1 (Figure 4A)

Figured specimen. ULVG-7047.

Description. Three-rayed test without bracchiopyle. Rays possess different lengths. Pores shape obscured by the poor preservation. Rays smooth without spines at extremities.

Remarks: Differs from *Paronaella*? sp. 3 by the presence of rays with practically the same width along their extension.

Material. 3 specimens; sample 1001B/21R/6W/71-75 cm.

Paronaella sp. 2 (Figure 4C)

Figured specimen. ULVG-7048.

Description. Three-rayed skeleton with rays at various angles. Two rays are positioned at about 180° to each other and are bigger, while the ray positioned at about 90° relative to others is smaller. Rays are probably elliptical in cross-section and have broken spines in extremities. Surface rough with nodes on the polygonal pore-frames junctions.

Remarks: This species differs from all other species of the genus recovered in the studied material by the presence of different inter-rays angles.

Material. 4 specimens; sample 1001B/21R/6W/71-75 cm.

Paronaella? sp. 3 (Figure 4B)

Figured specimen. ULVG-7049.

Description. Three-rayed test without bracchiopyle. Rays equal in length, possibly elliptical in cross-section. Test rough without lateral or central spines, and with nodes on the surface. Rays smooth, tending to be slender distally and keep practically the same inter-rays angle.

Remarks: Differs from *Paronaella* sp. 1 by having rays which tend to be slender distally.

Material. 6 specimens; sample 1001B/21R/6W/71-75 cm.

Family HAGIASTRIDAE Riedel, 1971

Orbiculiforma personex Pessagno, 1976, p. 35, pl. 6, figs. 12-13.

Orbiculiforma personex Pessagno. Pessagno, 1977a, p. 944, pl. 5, fig. 6.

Orbiculiforma personex Pessagno. Urquhart, 1994, p. 1406, fig. 5(8).

Orbiculiforma personex Pessagno. Packer & Hart, p. 141, figs. 5g-i.

Figured specimen. ULVG-7050

Occurrence. Campanian of Cyprus Island (Urquhart, 1994); Coniacian of Great Valley Sequence, California (Pessagno, 1976, 1977a); Coniacian-Santonian of Bornholm, Denmark (Packer & Hart, 2005); Coniacian-Turonian of Russia (Vishnevskaya et al., 2006); Santonian-Campanian of the Russian Pacific Margin (Vishnevskaya & Basov, 2007).

Material. 4 specimens, sample 1001B/21R/6W/71-75 cm.

Orbiculiforma renillaeformis (Campbell & Clark)

Figured specimen. ULVG-7051.

Occurrence. Uppermost Campanian to Maastrichtian of Great Valley Sequence, California (Pessagno, 1976).

Material. 9 specimens; sample 1001B/21R/6W/71-75 cm.

Orbiculiforma sp. 1 (Figure 4T)

Figured specimen. ULVG-7052.

Description. Test is circular in outline, with or without peripheral spines. Center of test markedly depressed; central cavity flanked by a prominent rim.

Remarks. Differs from *Orbiculiforma* sp. 2 by possessing a depressed central cavity, and by the flat pattern of the test.

Material. 19 specimens; sample 1001B/21R/6W/71-75 cm.

Orbiculiforma sp. 2 (Figure 4R)

Figured specimen. ULVG-7053.

Description. Test is circular in outline without peripheral
spines. Center of test markedly depressed and narrow. Central cavity flanked by a rim. **Remarks.** Differs from *Orbiculiforma* sp. 1 by possessing a narrow central cavity, and by the decrease in the height/width ratio.

Material. 20 specimens; sample 1001B/21R/6W/71-75 cm.

Orbiculiforma? sp. 3 (Figure 4K)

Figured specimen. ULVG-7054.

Description. Test circular to quadrangular in outline, without visible peripheral spines. Central area well marked.

Remarks. This species differs from all other species assigned to the genus *Orbiculiforma* in the present study by presenting a well marked central area. All specimens are incomplete.

Material. 5 specimens; sample 1001B/21R/6W/71-75 cm.

Genus *Crucella* Pessagno, 1971

Crucella aster (Lipman) Nakaseko & Nishimura, 1981 (Figure 4D)

Figured specimen. ULVG-7055.

Occurrence. Campanian of Chypre Island (Urquhart, 1994); Coniacian-Santonian of Bornholm, Denmark (Packer & Hart, 2005); Coniacian-Turonian of Russia (Vishnevskaya et al., 2006); Santonian-Campanian of Kara Crater, Russia (Vishnevskaya & Alekseev, 2008).

Material. 4 specimens; sample 1001B/21R/6W/71-75 cm.

Crucella? sp. (Figure 4E)

Figured specimen. ULVG-7056.

Description. Test ellipsoidal, spongy, with two polar spines; polar spines broken off, probably tetraradiate in axial section with an arrangement of ridges alternating with grooves.

Remarks. The broken spines make difficult a specific determination.

Material. 3 specimens; sample 1001B/21R/6W/71-75 cm.

Ostracodes

Classe OSTRACODA Latreille, 1802
Order PLATYCOPIDA Sars, 1866
Superfamily CYTHERELLOIDEA Sars,1866
Family CYTHERELLIDAE Sars, 1866

Genus *Cytherella* Jones, 1849

Cytherella? sp. (Figure 5A)

Figured specimen. ULVG-7011.
Dimensions. L= 0.58 mm; h= 0.40 mm; w= 0.25 mm.
Locality. Sample 16R/5W/70-75 cm.
Age. Danian.
Material. 2 C, 1 LV; samples 21R/6W/71-75 cm, 18R/4W/70-75 cm and 16R/5W/70-75 cm.
Range. Maastrichtian-early Danian.

Genus Cytherelloidea Alexander, 1929
Cytherelloidea sp. (Figure 5B)

Figured specimen. ULVG-7012.
Dimensions. L= 0.47 mm; h= 0.33 mm.
Locality. Sample 20R/2W/77-82 cm.
Age. Maastrichtian.
Material. 1 LV; sample 20R/2W/77-82 cm.
Range. Maastrichtian.

Remarks. This species is identified as Cytherelloidea due to the reticulate ornamentation, not usual in Cytherella.

Order PODOCOPIDA Müller, 1894
Suborder BAIRDIOCOPINA Gründel, 1967
Family BAIRDIIDAE Sars, 1888
Genus Bairdoppilata Coryell, Sample & Jennings, 1935
Bairdoppilata aff. B. southerhamensis Weaver, 1982
(Figure 5C)

aff. Bairdoppilata southerhamensis Weaver, 1982, p. 25-26, pl. 4, figs. 4-6.

Figured specimen. ULVG-7013.
Dimensions. L= 1.18 mm; h= 0.79 mm; w= 0.58 mm.
Locality. 18R/3W/72-77 cm.
Age. Danian.
Material. 2 C; samples 21R/4W/71-76 cm and 18R/3W/72-77 cm.
Range. Maastrichtian-early Danian.

Remarks. The precise taxonomic position of some bairdiids is under constant discussion. The main difference between Bairdoppilata and Bairdia McCoy, 1844 are the denticles present close to the terminal elements of the hinge of the first. According to the revision of the family Bairdiidae by Maddocks (1969), the genus Bairdia is restricted to the Paleozoic. For this reason, this species is here referred as Bairdoppilata.

Bairdoppilata sp.
(Figure 5D)

Figured specimen. ULVG-7014.
Dimensions. L= 1.02 mm; h= 0.69 mm.
Locality. 20R/1W/69-74 cm.
Age. Maastrichtian.
Material. 1 LV; sample 20R/1W/69-74 cm.
Range. Maastrichtian.

Remarks. The present specimen was identified as Paleoabyssocythere Benson, 1977 based on both internal and external morphological features. Despite its good preservation the material could not be ascribed to the species described by Benson (1977). It differs from P. cretacea by the absence of the reticulation and the ventrolateral nodosity poorly developed, and from P. cenozoica by the absence of reticulation and the anterodorsal ear less acuminated.

Family SIGILLIDAE Mandelstam, 1960
Genus Cardobairdia Bold, 1960
Cardobairdia sp. (Figure 5E)

Figured specimen. ULVG-7015.
Dimensions. L= 0.46 mm; h= 0.22 mm.
Locality. 18R/4W/70-75 cm.
Age. Danian.
Material. 1 RV; sample 18R/4W/70-75 cm.
Range. Early Danian.

Remarks. The genus Cardobairdia is characterized by strong overlap, peculiar central muscle scars and, in most cases, a spine in the posterior margin. Bold (1974) comments that Cardobairdia might possibly be a junior synonym of Sigillium Kuznetsova, 1961. The suprageneric taxonomy of Cardobairdia is still a controversial subject, what explains its allocation in different families. We consider that the classification in the family Sigillidae, according to Dall’Antonia (2003) is more suitable than Saipanettidae as proposed by Bold (1974).

Family TRACHYLEBERIDIDAE Sylvester-Bradley, 1948
Genus Paleoabyssocythere Benson, 1977
Paleoabyssocythere sp. (Figures 5F, G)

Figured specimen. ULVG-7016.
Dimensions. L= 0.8 mm; h= 0.51 mm.
Locality. 20R/1W/69-74 cm.
Age. Maastrichtian.
Material. 1 LV; sample 20R/1W/69-74 cm.
Range. Maastrichtian.

Family KRITHIDAE Mandelstam, 1958
Genus Krithe Brady, Crosskey & Robertson, 1874
Krithe sp. (Figure 5H)

Figured specimen. ULVG-7017.
Dimensions. L= 0.69 mm; h= 0.36 mm; w= 0.29 mm.
Locality. 16R/5W/70-75 cm.
Age. Danian.
Material. 1 LV, 1 C; samples 16R/5W/70-75 cm and 16R/2W/71-76 cm.
Range: Danian.

Remarks. The main morphological characteristic that allowed the identification of this specimen in Krithe is the presence of the posterior pit, present in all species of the genus.
RESULTS AND DISCUSSION

Radiolarians

Studies on Maastrichtian radiolarians are relatively rare. Foreman (1968) described Maastrichtian species, mainly nassellarians, emphasizing internal primary structures. Pessagno (1976) presented a taxonomic and biostratigraphic analysis of radiolarians from the Upper Cretaceous of the Great Valley Sequence, California. According to that author, however, the Maastrichtian interval was not extensively studied in that article. Ling & Lazarus (1990) and Ling (1991) reported well-preserved Maastrichtian faunas from the Antarctic region of the ODP Leg 113 and Leg 114, respectively. Soloviev et al. (2000) reported the occurrence of Campanian-Maastrichtian Radiolaria from the Olyutor Zone (Southern Koryak upland). Dumitrica & Hollis (2004) studied Maastrichtian phaeodarian Radiolaria from the DSDP Site 275 near New Zealand. Studies about radiolarian faunas that registered the K/Pg transition are also not common, being restricted to the Pacific Ocean and more abundant in the New Zealand region (Keller et al., 1997; Hollis, 1997, 2002; Hollis & Kimura, 2001; Hollis & Strong, 2003; Hollis et al., 2003).

In the present study, radiolarians were found in two samples of the ODP Site 1001B (Figure 2), and their occurrences are restricted to Maastrichtian rocks (limestones), where 43 species were identified. The radiolarian abundance, preservation index (PI), and nassellarians/spumellarians ratio (N/S) were estimated according to Kiessling (1996). In the sample 1001B/21R/6W/71-75 cm the estimated radiolarian abundance is of 1900 rads/g (radiolarians per gram), with PI= 3 and N/S= 1.28, while in the sample 1001B/20R/5W/69-73 cm the estimated abundance

Figure 5. All figures are SEM of ostracodes from Site 1001B. A, Cytherella sp., C right view, sample 16R/5W/70-75 cm. B, Cytherelloidea sp., LV lateral view, sample 20R/2W/73-82 cm. C, Bairdopillita sp. aff. B. southerhamensis Weaver,1982, C right view, sample 18R/3W/72-77 cm. D, Bairdopillita sp., LV lateral view, sample 21R/4W/71-76 cm. E, Cardobairdia sp., RV lateral view, sample 18R/4W/70-75 cm. F-G, Paleoabyssocythere sp.; F, LV external view; G, LV internal view, sample 20R/1W/69-74 cm. H, Krite sp., C right view, sample 16R/5W/70-75 cm. I, Gen. et sp. indet., RV lateral view, sample 18R/4W/70-75 cm.
is of 3000 rads/g, PI= 4 and N/S= 4.88. Increases in the relative abundance of nassellarians, as well as in the preservation index were observed in the last sample. The radiolarian fauna recovered from the ODP Site 1001B presents an elevated abundance of the genus Dictyomitra (corresponding approximately to 38% of the fauna). It contains also typical taxa for the Upper Cretaceous strata, and even species considered index fossils such as Orbiculiforma renillaeformis (Campbell & Clark) Pessagno.

Pessagno (1976) proposed a biostratigraphic zonation for the Great Valley Sequence, California, in which Maastrichtian strata are attributed to the Orbiculiforma renillaeformis Interval Zone (Pessagno, 1976). The lower limit of this zone is marked by the extinction of the family Phaseliformidae, while the upper limit is marked by the final occurrence of some taxa (see Pessagno, 1976) The absence of Phaseliformids, as well as the co-occurrence of Orbiculiforma renillaeformis (Campbell & Clark) Pessagno, Archaeodictyomitra regina (Campbell & Clark) and Dictyomitra multicoastata Zittel in the material studied herein suggest a Maastrichtian age for the samples 1001B/21R/6W/71-75 cm and 1001B/20R/5W/69-73 cm, including them in the Orbiculiforma renillaeformis Interval Zone (Pessagno, 1976). A Maastrichtian age was previously reported by Sigurdsson et al. (1997), based on nanofossils and foraminifers, to the same interval of the section (Figure 2).

The sparse occurrences of radiolarians in the studied area could be related to occasional intensifications in the oceanic circulation pattern (Blueford, 1988). Those events could have generated increases in the planktonic productivity during the Late Cretaceous (De Wever & Baudin, 1996). This can be a relevant aspect in the determination of the similarity between radiolarian faunas in the Late Cretaceous, and could be corroborated with future studies.

More studies about Maastrichtian radiolarians in the near future could confirm the stratigraphic range of some Upper Cretaceous taxa, as presented in this study, and contribute to the improvement of the knowledge about the global oceanic circulation in the Upper Cretaceous.

Ostracodes

The ostracode fauna recorded in the present work shows an uneven distribution along the core. Seventeen out the 29 samples studied were barren for ostracodes and the 19 specimens recovered were identified into seven taxa. They are left in open nomenclature following the scarcity of specimens and the poor preservation of most of them.

Bairdoppilata southerhamensis Weaver described in Cenomanian rocks of England has affinity with the species registered in the Maastrichtian-early Danian in the present study. The difference of age and the scarcity of specimens (two carapaces), however, make the identification of those taxa under the same species questionable.

The deep sea dweller genus Paleobayssocythere has only two species described so far: P. cretacea and P. cenozoica, both proposed by Benson (1977) in the Cretaceous/Paleogene of São Paulo plateau and Rio Grande rise, South Atlantic. The single specimen recorded in the present work is somewhat different of both and it is not clear if it is a new species. The only specimen of Cardobairdia sp. (RV) was filled with sediment, preventing a more detailed study and precise identification. Cytherella and Krithe are genera usually smooth and very diversified demanding the study of many specimens and the analysis of internal morphological features for the identification at specific level. The specimens of those two genera in the present study were exclusively carapaces and for that reason, left in open nomenclature.

Despite their scarcity, the ostracodes give some information for the paleoenvironmental characterization of the studied area. In the Cenozoic, the association Paleobayssocythere-Krithe-Bairdoppilata-Cytherella would fit perfectly in a psychrospheric environment. Although some of those taxa present eurybathic distribution (e.g. Krithe, Cytherella, Bairdoppilata) and their ecologic preferences may have change since the Cretaceous (retrothermal tendencies), it is possible to assume that the depositional environment in the site 1001B was either a bathyal or outer shelf one.

ACKNOWLEDGMENTS

The authors are indebted to ODP for providing the samples, as well as to the staff of the Laboratório de Micropaleontologia of Universidade do Vale do Rio dos Sinos by all support and helpful discussions. The authors are grateful to Rogério Martins (CENPES/PETROBRAS) for the SEM images; Paulian Dumitrlica (Institut de Géologie et Paléontologie) and Bernard Andreu (Université de Toulouse) for the critical revision of the manuscript.

REFERENCES

Received in May, 2009; accepted in September, 2009.